Interregional synaptic competition in neurons with multiple STDP-inducing signals.
نویسندگان
چکیده
Neocortical layer 5 (L5) pyramidal cells have at least two spike initiation zones: Na(+) spikes are generated near the soma, and Ca(2+) spikes at the apical dendritic tuft. These spikes interact with each other and serve as signals for synaptic plasticity. The present computational study explores the implications of having two spike-timing-dependent plasticity (STDP) signals in a neuron, each with its respective regional population of synaptic "pupils." In a detailed model of an L5 pyramidal neuron, competition emerges between synapses belonging to different regions, on top of the competition among synapses within each region, which characterizes the STDP mechanism. Interregional competition results in strengthening of one group of synapses, which ultimately dominates cell firing, at the expense of weakening synapses in other regions. This novel type of competition is inherent to dendrites with multiple regional signals for Hebbian plasticity. Surprisingly, such interregional competition exists even in a simplified model of two identical coupled compartments. We find that in a model of an L5 pyramidal cell, the different synaptic subpopulations "live in peace" when the induction of Ca(2+) spikes requires the back-propagating action potential (BPAP). Thus we suggest a new key role for the BPAP, to maintain the balance between synaptic efficacies throughout the dendritic tree, thereby sustaining the functional integrity of the entire neuron.
منابع مشابه
Inter - regional synaptic competition in neurons with multiple STDP - 3 inducing signals 4 5 Abbreviated title : Synaptic competition between dendritic regions
Journal of Neurophysiology 1 2 Inter-regional synaptic competition in neurons with multiple STDP3 inducing signals 4 5 Abbreviated title: Synaptic competition between dendritic regions 6 7 Lital Bar-Ilan, Albert Gidon, Idan Segev 8 9 Institute of Life Sciences, Department of Neurobiology and Center for Neural 10 Computation, the Hebrew University, Edmond Safra Campus, Givat Ram, 11 J...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 105 3 شماره
صفحات -
تاریخ انتشار 2011